
Using i* to identify candidate aspects

Eva Spies†, Julia Rüger† and Ana Moreira‡
† Universität Koblenz-Landau, Postfach 201 602, 56016 Koblenz GERMANY

‡Dept. Informática, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, PORTUGAL
{evaspies, jrueger}@uni-koblenz.de, amm@di.fct.unl.pt

Abstract

Aspect-orientation has been capturing researcher’s
attention for the last few years. We have seen the birth of
several aspect-oriented programming techniques and also
the propagation of the aspect concept to the earlier stages
of the software development process, such as
requirements analysis and design. Our long-term goal is
to extend aspect-orientation to the business modelling
activity. This paper discusses our first results by using the
i*1 technique to assist us with the concern elicitation
process.

1. Introduction

The main idea of separation of concerns is to focus ones
attention only on one certain issue at a time. Separation
of concerns aims at identifying and modularizing those
parts of software that are relevant to a particular concept,
goal or purpose. Traditional approaches to software
development, such as object-oriented and structured
methods, have been created with this principle in mind.
However, they are unable to handle broadly scoped
requirements and constraints, also known as non-
functional requirements. Non-functional requirements are
global properties of a system and usually refer to quality
of service. Recent approaches achieve separation of
concerns by integrating functional and non-functional
requirements [Dardenne 1993, Yu 1995a]. Nevertheless,
they do not consider the crosscutting nature of some of
those concerns.

Examples of crosscutting concerns are security, fault
tolerance and usability. The main goal of aspect-
orientation is to promote modularization by offering
mechanisms that permit the encapsulation of crosscutting
concerns in separate modules, known as aspects. Aspects
make the specifications and the code more general, so
that they can be reused in several other cases. Aspect-
oriented software development (AOSD) aims at
providing means for their systematic identification,
separation, representation and composition [Elrad 2001,
AOSD].

For the last few years we have seen the appearance of
several aspect-oriented requirements analysis and design
approaches. Our paper focuses on aspects on the early-
requirements activity (as opposed to late-requirements,
according to the common requirements engineering
classification activities [Mylopoulos 1999]). One of the
problems pointed to the Early Aspects (www.early-
aspect.net) approaches (e.g. [Moreira 2002, Rashid 2003,
Brito 2004, Baniassad 2004]) is the lack of an elicitation
process, since are late-requirements techniques. Our work
is a first step towards solving this problem. We based

1 Should be read “eye-star”.

ourselves on the early-requirements technique i* [Yu
1995], as a guide to the identification of the main
candidate aspects and to integrate the results within the
requirements engineering model proposed in [Brito
2004]. The goal is to propose a set of guidelines to help
identifying concerns and describe each one using the
template proposed in [Brito 2004].

This paper is organized as follows. Section 2 sets the
foundation for this paper, by discussing some work on
early aspects and giving an overview of i*. So that the
main section of this paper, Section 4, can be better
understood, we first apply i* to a case study, in Section 3.
By doing so the reader can have a better feeling of the
main models proposed by i*, from where our guidelines
to derive concerns, and ultimately candidate aspects, will
be extracted in Section 4. Finally, Section 5 concludes
this paper and points directions for further work.

2. Background

2.1 Early aspects

There are three main steps in the aspect-oriented software
development. First, we need to identify crosscutting
concerns, and therefore be able to structure the
requirements by decomposing the problem into concerns.
Next, we need to represent (specify or implement,
depending on the level of abstraction) each concern.
Finally, all the concerns, crosscutting and non-
crosscutting, need to be composed to obtain the final
system. The composition process is also known as
weaving. The composition is guided through composition
rules. A composition rule defines the way, in which a
crosscutting concern affects other concerns. The
composition rule can appear inside the crosscutting
concern, specifying how other concerns are affected by
this crosscutting concern (just like what happens in
AspectJ); it can appear inside a non-crosscutting concern,
specifying the way crosscutting concerns affect that
concern; finally, it can appear in a separated module.

Our paper focuses on aspects at the early stage of the
software development life cycle. We call them “candidate
aspects”, as at this early stage we still do not know if they
will be handled as aspects during later stages of the
software development process [Rashid 2003].

Our work is based on the results presented in [Brito
2004], in particular a template they propose to define
concerns, crosscutting or non-crosscutting. The template
is presented in Table 1.

Table 1: Template to describe a concern

Name The name of the concern.

Source
Source of information, e.g. stakeholders,

documents, domain, catalogues and
business process.

Stakeholders User that needs the concern in order to
accomplish their job.

Description Short description of the intended behaviour
of the concern.

List of Responsibilities

Ri
List of what the concern must perform;

knowledge or proprieties the concern must
offer.

List of Contributions

Ci
List of concerns that contribute or affect

this concern. This contribution can be
positive (+) or negative (-)

List of Priorities

Stakeholder i

Expresses the importance of the concern for
a given stakeholders. It can take the values:
Very Important, Important, Medium, Low

and Very Low.

List of required concerns

RCi
List of concerns needed or requested by the

concern being described

A template needs to be filled in for each concern. In order to
accomplish this they need to identify concerns, specify concerns

and identify crosscutting concerns. In the first task the rows
name, source, stakeholders and description can be completed.

The second task, specifying concerns, is divided into: applying
the approach that better specifies each concern (classification
row) and identifying contributions between concerns so that
conflicts can be detected. Conflicts detected are solved by

attributing priorities to conflicting concerns (priority row). The
last task composes concerns by first identifying those that are
crosscutting, which helps filling in the required concerns and

description rows. A concern is crosscutting if it is needed by two
or more concerns.

2.1 i* framework

Based on the NFR-Framework [Chung 2000], i* provides
understanding of the reasons (“why”) which underlie
system requirements, focused on strategic actor
relationships [Yu 1995a]. It is visualized in two main
models, the Strategic Dependency Model (SDM) and the
Strategic Rational Model (SRM). The SDM gives an
overview of the systems environment meanwhile the
SRM illustrates the internal behaviour of the actors.

Strategic Dependency Model
This model presents the systems’ goals and what has to
be done to reach them. It captures the motivation and the
rationality of activities, which are carried out by the main
actors of the system. The main elements are Actors,
Dependencies and Strength.

Actors are active entities of the system that have to
interact with each other to make the system work (see
Figure 1). Yu states that actors can be differentiated into
three items, the sub-units of a complex actor [Yu, 1997a].
Those are role, agent and position. An agent represents a
person or a system; it is the most important type of actor
and therefore the only one used in this paper.

Fig. 1: Notation for actor

Dependencies are defined among actors and are the
most important issues in the SDM [Yu 1995a]. They are

intentional relationships that deal with desires,
commitments and expectations between actors. Those
dependencies are used to differentiate among four kinds
of relationships (see Figure 2): goal-dependency, task-
dependency, resource-dependency and softgoal-
dependency. In a dependency, one actor, the depender,
depends on another actor, the dependee, for a certain
concern, the dependum (a goal, a task, a resource or a
softgoal).

 Fig 2.a: Goal-dependency

 Fig. 2.b: Task-dependency

 Fig. 2.c: Resource-dependency

 Fig. 2.d: Softgoal-dependency

In a goal-dependency (Figure 2.a), the dependum is

expressed as an assertional statement. The dependee has
to do whatever is necessary and possible, to achieve the
goal however he is free how he will achieve it. On the
one hand, a depender does not care how the dependee
solves the goal he also does not have to have knowledge
to achieve this goal. It is the outcome that matters. On the
other hand, a depender is dependent if the dependee fails.

In a task-dependency (Figure 2.b), the dependum is an
activity that has to be carried out. A task-dependency
specifies how the dependee should perform the task, but
not why. In a SDM there are no steps shown which are
required to perform the task. The depender has control
over how the task is performed; he is able to have a task
performed without engaging personally, but is vulnerable
if the task fails. Even though the dependee is controlled,
he still has its freedom of action within this constrains.

In a resource-dependency (Figure 2.c) the depender
depends for an availability of an entity from the
dependee. This entity could be physical or informational.
There are no decisions, or issues to be addressed; it is the
resource of a deliberation action process. The resource
can be used by the depender.

Finally, a softgoal-dependency (Figure 2.d) is
associated with the notion of non-functional
requirements. The functionality is similar to the goal-
dependency. The dependee should perform a task which
encounters a softgoal. Different to goals is that the
conditions to be attained are elaborated as the task is
performed and that there are no clear-cut criteria for their
satisfaction. The depender makes the last decision, with
the benefit of the know how of the dependee. A Softgoal
allows the SDM to deal with many usual informal
concepts.

The dependencies indicate the control in the
relationship between two actors regarding the dependum.
They characterize how decisions fall on either side of the
dependency, and which side will handle problems if they
arise.

The strength is an addition to give a dependency an
importance rank. It can be marked independently on both
sides of the actors with a symbol. There are three
different kinds of strength: open (uncommitted),
committed and critical. (See Figure 3 for an example.)

Strength “open” uses the symbol “O”; if this sign
appears on the side of the depender, it means that if the
dependency fails the depender is affected but not too
badly; on the other hand, if it appears on the side of the

dependee it signifies that the dependee is able to achieve
the goal/perform the task/furnish the resource, but he has
no commitment with this relationship.

Strength “committed” has no special symbol
associated. This means that whenever there is no strength
marked the dependency is committed. If there is no
symbol on the dependers’ side it means that if the
dependency fails the depender is affected badly. No
symbol on the dependees’ side signifies that the dependee
will do his best to gain the goal/task/resource.

Strength “critical” has the symbol “X”; it is marked
on the side of the depender to signify that a goal of the
depender could not be achieved if the dependency fails.
At the side of the dependee the symbol means that there
is a need of guarantee the success of goal/task/resource to
have a critical dependency.

Fig. 3: Example of a dependency with two strengths

Strategic Rational Model
The SRM provides a way of modelling stakeholder’s
interests and how they might be met. At the first look,
this model is similar to the SDM, since it also contains
dependencies (goal-, task-, resource-, softgoal-
dependency). The main difference is that there is no
overview of the systems’ environment, instead, it is a
closer view at the important actors of the future system.
The SRM is at a more detailed level than the SDM. It
shows what happens “inside” the actors, to model internal
intentional relationships. This means that one needs to
create a separate SRM for each actor of the system. Some
dependencies inside the Strategic Rational Model are
connected to external dependencies of the SDM. Its main
elements are dependencies, task-decomposition links,
means-end links and contributions.

Instead of defining dependencies between actors, as
in the SDM, the SRM links the dependencies into a tree.
The tree of dependencies shows what the particular actor
does by himself. Task-decomposition links and means-
end links hold the dependencies together (see Figure 3).

Fig. 4. a) Task-decomposition link b) Means-end link

A task-decomposition link (Figure 4.a) shows that a

task is divided into sub-elements. This leads to a
hierarchy that describes what should be done to carry out
a certain task. Only if all the sub-elements are achievable
the mother-element is achievable, therefore this is an
AND relationship.

Means-ends links (Figure 4.b) are links between
internal relationships of intentional elements (goal, task,
resource, softgoal), but only inside the SRM; they don’t
exist in the SDM. They should help to understand the
“why’s” you could ask for in some tasks/pursue a
goal/need a resource/want a softgoal. Means-end
relationships suggest that there can be other means for
achieving the same goal. This means that we can handle
those relationships as OR relationships. “The means-end
links for softgoals, however, require more differentiation
because there can be various types of contributions
leading to a judgment of whether the softgoal is
sufficiently met” [Yu, 1997].

In addition, means-end links have contributions,
which give assessments to the dependencies. They can be
positive (help, make, some+) or negative (hurt, break,
some-). According to Yu, “the SRM, though conducive to
systematic reasoning and decision making, still relies on
human designers to make decisions and judgements”
[Yu, 1995b].

3. Applying i* to a case study

The example we have chosen to illustrate the use of i*
and to explore the connection of this framework with
aspects is an integrated car key system that is able to help
its owner to find his/her car in a car parking. We call this
key YkeyK (meaning “Your Key Knows”).

3.1 YkeyK requirements

A YkeyK is probably what we all wished to have any
time we forgot where we parked our car. Imagine you
park your car in a multi-storey car parking, and, after a
few hours you forget where you left your car. Wouldn’t it
be nice if somebody or some device would show you the
way? YkeyK is that device. It is the key of the car
equipment with special functionalities that leads you
straight through the shortest and quickest way to the
parking space where your car is.

There are requirements to the car and the car park,
which are needed to make the guiding system work. First,
the car has to be equipped with a “car location system“2.
Second, the car park has to cooperate with the “car
location system” by having the necessary equipment and
data for the search. This data consists of information
about the topology and environment, the pricelist (cost
per hour) as well as the entry time (hour and minute) of
the car.

Figures 5, 6 and 7 give a general view of the whole
context in which the YkeyK functions.

Fig. 5: Data transfer at the entry gate

Fig. 6: Search mode

Fig. 7: Data transfer at the exit gate

Figure 5 illustrates what happens when the driver is

standing with his/her car in front of the barrier next to the
entrance machine of the car park. This equipment has to
send the information in the database to the car location

2 The “car location system” is an imaginary system, which has to be

able to cooperate with the YkeyK and is supposed to locate it. It is not our
main system; therefore we will not specify it.

system, which acknowledges the transfer. After this, the
machine produces a ticket that the user has to collect so
the barrier opens.

The YkeyK can be in two modes, the stop mode and
the search mode. To change between those modes, the
user has to press the button “search / stop”. In stop-mode
the YkeyK has no signal connection to the “car location
system“, it only shows the current time and date on the
screen. To get into search-mode (see Figure 6) the user
presses the button on his key, when s/he wants to be
guided. The YkeyK sends a request to the car location
system initiating the search. This request is received by
the car location system which starts to locate the YkeyK
and sends back signals of direction-symbols. The YkeyK
transforms those signals into direction symbols and
shows them on the screen for the user to read. Those
symbols are “go up”, “go down”, “go straight”, “go
right”, “go left” and “go back”. During search-mode, the
YkeyK has always to send signals, so the car location
system can locate it and correct the direction. If the user
doesn’t follow the shown direction the “car location
system” has to react quickly and generate a new way.

Figure 7 describes what happens when the driver
wants to drive out of the parking and is standing in front
of the barrier, next to the exit machine. The user has to
put her/his paid ticket into the machine, which requests
the car locations system to delete the database. (To pay
the ticket, there is another machine, similar to those in
any car park.) After deleting the database, the car location
system acknowledges the cancellation and the barrier
opens.

3.2 Building the SDM and the SRM

Figure 8 depicts the SDM for the YkeyK whole
operational environment. At this level of abstraction, the
SDM is composed of a set of actors and the dependencies
between those actors. One actor (the YkeyK) is our
system while the other represents the stakeholders
(people or other systems) that the YkeyK needs to
interact with. As explained in Section 2.2, the
dependencies relate actors through goals, tasks, resources
or softgoals. In particular, here we present the systems’
goals and what has to be done to reach them. The SDM
captures the motivation and the rationality of activities,
which are carried out by the main actors of the system.

Fig. 8: SDM for the YKeyK system

In our case the actors are “User”, as a human being,

“YkeyK”, our future system, “car location system”, the
equipped car and “Parking”, as a fixed well-equipped
setting. The main part of the system is the YkeyK
therefore we need to go deeper into this actor and see
what are its main actors and dependencies. When trying
to build the SRM we realized that this was still a complex
system. For this reason we decided to build a lower level
SDM for that actor (see Figure 9). To reach the users’
goal, to be guided, we identified four actors “stop mode”,

“search mode”, “clock” and “display”. In “stop mode”
the YkeyK does not send signals but it can receive them.
The main mode is probably “search mode”. Here the
sending, receiving and also processing, of signals take
place. The “clock”, in a deeper level SDM, generates the
cost the parking time. On the “display” the generated
data, such as time, date, direction symbols, parking time
and cost, is presented to the user. In this circle of actors,
all the interrelationships of the SDM from the upper level
(see Figure 8) are contained.

Fig. 9: SDM for the YKeyK actor

Building lower level abstraction SDMs can be

thought of as building lower level abstraction data flow
diagrams; this means that we need to guarantee
consistency between levels of abstraction, by considering
that all the dependencies “entering” or “leaving” an actor
need to be handled in the SDM that describes that actor.
So, the new actors have interrelationships with the actors

of the global SDM.Figure 10 illustrates the strategic
rational model for our case study. In this paper, we only
show the SRM to the actor “search mode”, as it is the
most important element in our system. This SRM is the
model represented inside the dotted circle. The
dependencies around this circle have been generated in
strategic dependency model.

Fig. 10: SRM for Search Model

4. Deriving candidate aspects from i*

In this section we show how we can relate the SDM and
SRM elements to identify concerns and, from there,
candidate aspects. Based on [Brito 2004] we will propose
a set of guidelines to help completing a template out of a
SDM and a SRM. Finally, we will apply these guidelines
to the YKeyK case study.

4.1 Guidelines

In order to gather all the information needed for the
template we need to:

• Build a template for each dependency. This
means that a dependency is a candidate concern.

• Define a mapping for getting from the SDM and
SRM the information for the template.

• Propose a set of keywords to be used in order to
simplify and to disambiguate the description of
dependencies.

• Propose a mapping between i* contributions and
template’s contributions.

• Propose a mapping between i* strengths and the
template’s priorities.

Each of these points is explained as we discuss the
various entries in the template. The Name row is filled
with the name of a dependency. The Source row
describes where the information of the dependency
comes from. Those sources can be stakeholders,
documents, a domain, catalogues or a business process.
The Stakeholders row can be read out of the models.

In SDM the stakeholders are the two actors connected
by the dependency under study. In case of the SRM there
exists only one stakeholder, which is the actor being
described by the model.

The Description row describes the dependency in
SDM one has to use certain keywords to identify the
dependency, which may be a goal, a softgoal, a task or a
resource. For a goal, the depender wants the dependee to
achieve “the goal” for it. In a task dependency, the
dependee has to perform “the task” for the depender. In a
resource dependency, the depender asks for “the
resource” to receive from the dependee. The depender
wishes “the softgoal” for the dependency performed by
the dependee.

In a SRM, there is only one actor, the depender, not
the dependee. So we need different keywords: for the
goal, the actor wants to achieve the goal. The actor has to
perform “the task”. For the resource dependency, the
actor has to offer “the resource”. For the softgoal, the
actor should perform “the softgoal”. The degree of
strength of “should” will vary according to the
contributions.

The List of Responsibilities row is a little more
difficult to fill, since there is no accurate rule to read it
from an SDM model. Here we have to think about which
other dependencies are related to this recent one. Those
are the dependencies which the current dependency has
to perform; this could be knowledge or proprieties that
the dependency must offer.

The List of Contributions row can only be filled
based on the information on the SRM. The template
proposes that a positive (+) or negative (-) contribution
should be specified. In the SRM contributions are “help”,
“make”, “some+”, “hurt”, “break” and “some-“. We map

“help”, “make” and “some+” to positive (+). The others
are mapped to negative (-). If a SRM does not exist, and
the only available information is that of a SDM the
contribution should take the value “<none>”.

The List of Priorities row can be easily filled in based
on the information available in an SDM. Each
dependency shows how important it is, by means of the
strength symbol. The position of the symbol indicates to
which actor the priority refers to. The template provides
five kinds of priority, while the model uses only three.
“X” stands for “very important”, no symbol (committed)
refers to “important” and “medium”, and “O” stands for
“low” and “very low”.

The List of Required concerns row (notice that in this
case, the concerns are dependencies) requires a little
more work. If the dependency under study is a softgoal,
this row cannot be filled. So one only writes “<none>”.
For the other dependencies one has to find the matching
softgoals, which have to be found by closely inspecting
the requirements of each dependency.

4.2 Applying the guidelines to the case study

Applying the rules and mappings discussed in the
previous subsection to our case study helps us identifying
a reasonable set of concerns. Tables 2 and 3 show two
templates completed based on the information available
on the SDMs and SRMs built for our case study. While
Table 2 describes the template for the goal “guidance”,
Table 3 describes the template for the “response time”
softgoal.

Table 3: Template for Guidance goal-dependency

Name Guidance
Source Stakeholders
Stakeholders User, YkeyK

Description The User wants the YkeyK to
achieve “guidance”.

List of Responsibilities
R1 User presses button to be guided.

R2 YkeyK shows direction symbols
on the screen.

List of Contributions
<none>

List of Priorities
User Very important
YkeyK Very important

List of Required Dependencies
RD1 Correctness
RD2 Response time
RD3 Usability

Table 4: Template for Response Time softgoal-
dependency

Name Response time
Source Stakeholders, catalogues
Stakeholders Search mode
Description The search mode should perform

“response time”.
List of Responsibilities
R1 The search mode should react in

time when it transfers signal.
R2 The search mode should react in

time when it receives signal.
R3 The search mode should react in

time when it processes answer.
R4 The search mode should react in

time when it generates direction
symbol.

List of Contributions
correctness -
List of Priorities
<none>
List of Required Dependencies
<none>

Given that the resulting set of concerns was obtained

based on the results of a business analysis, we have a
comfortable starting point to now start our late-
requirements analysis.

As the development process progresses, new
concerns will be identified, not only during requirements
engineering, but also during architecture modelling and
design.

The candidate aspects are the concerns that cut across
more than one concerns, i.e. those that are required by
several other concerns. By analyzing all the templates
obtained for our system, we found the following
crosscutting concerns: Response Time, Usability,
Correctness and Availability.

5. Conclusion and future work

One of the problems that are pointed to the existing
aspect-oriented requirements engineering approaches is
the difficulty on identifying concerns, since those
approaches lack an elicitation process.

Our work is a first step towards solving this problem.
We based ourselves on the i*, a business modelling
technique, developed by Yu at University of Toronto [Yu
1995a]. The main result of our work is to offer a list of
the candidate aspects each one specified according to the
template proposed in [Brito 2004]].

The paper started with an overview on aspect-
orientation and then presented an introduction to business
modelling through i*. We discussed some guidelines and
mappings that should be followed to describe a concern
using the template, and followed by applying those to a
case study.

Our plan for the future is to formally define the
mappings and rules, test them with more cases studies
and to integrate our views further with other aspect-
oriented requirements engineering approaches. On a
complementary line of work, we are also aiming at
extending business modeling with aspects. All softgoals
from one kind, for example correctness, are able to cut
across each other. We need to investigate this further, as
well as the interactions between a softgoal and other
kinds of softgoals.

References

[AOSD] www.aosd.net

[Baniassad 2004] E. Baniassad and S. Clarke. Theme: An
approach for aspect-oriented analysis and design. In 26th
Int'l Conf. Software Engineering (ICSE), (Edinburgh,
Scotland). IEEE (To Appear).

[Brito 2004] I. Brito, A. Moreira. Integrating the NFR
framework in a RE model, Workshop on Early-Aspects at
the Third International Conference on Aspect-Oriented
Software Development, Lancaster, UK,
http://trese.cs.utwente.nl/workshops/early-aspects-
2004/workshop_papers.htm, 2004.

[Chung 2000] L. Chung, B.A. Nixon, E. Yu and J.
Mylopoulos. Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

[Dardenne 1993] A. Dardenne, A. van Lamsweerde, and
S. Fickas. Goal-directed requirements acquisition.
Science of Computer Programming, 20(1-2):3–50, 1993.

[Elrad 2001] T. Elrad, R. E. Filman, A. Bader, Guest
Editors. Aspect-oriented programming. High-
Performance Java Communications of the ACM Aspect-
oriented Programming, October 2001-Volume 44
Number 10

[Moreira 2002] A. Moreira, J. Araújo, I. Brito.
"Crosscutting Quality Attributes for Requirements
Engineering", Software Engineering and Knowledge
Engineering Conference (SEKE), Ischia, Italy, 15-19 July
2002.

[Mylopoulos 1999] J. Mylopoulos. Requirements-Driven
Information System Engineering. Workshop on Agent-
Based Information Systems. CAiSE’99. Heidelberg,
Germany 1999.

[Rashid 2003] A. Rashid, A. Moreira, J. Araújo.
"Modularisation and Composition of Aspectual
Requirements", AOSD 2003, Boston, USA, 17-21
March, 2003.

[Yu 1995a] E. Yu. Modelling Strategic Relationships for
Process Reengineering, Ph.D. thesis, also Tech. Report
DKBS-TR-94-6, Dept. of Computer Science, University
of Toronto, 1995.

[Yu 1995b] E. Yu. Models of Supporting the Redesign of
Organizational, Work. Proc. Conf. on Organizational
Computing Systems (COOCS’95), Milpitas, California,
August 1995, pp. 225-236.

[Yu 1997] E. Yu. Strategic Modelling for Enterprise
Integration, University of Toronto web page.

